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A technique for the calculation of the thermoelectric power in many-particle systems exhibiting hopping 
conduction is presented. It is shown that the combination of thermopower and conductivity data provides 
very useful information about the microscopic nature of the ion hopping process in solid electrolytes. There 
are two main qualitative features of the transport data. In most systems the heat of transport (determined 
from the thermopower) and the activation energy for conduction are nearly equal, and in systems exhibiting 
lattice gas order-disorder transitions, these parameters may change across the phase boundary. An 
extended polaron lattice gas model is presented which is consistent with these features of the data and 
which allows a determination of the relative strengths of static barrier and polaron effects on the hopping. 
The results of the model suggest that polaron coupling is relatively small in most materials except for those 
based on organic halides. 

I. INtroduction 

Superionic conductors are solid 
electrolytes which are characterized by rather 
unusual transport properties. The conduc- 
tivities of these materials approach those of 
liquid electrolytes and in addition, they exhibit 
very large thermoelectric powers (I). There 
has been some confusion in the literature 
concerning the thermopower of superionic 
conductors and it is the purpose of this paper 
to attempt to clear up this confusion and to 
present a theory for the thermopower of the 
lattice gas model (2-5). A comparison is made 
between this theory and the free ion model (6). 
It is shown that the thermopower provides 
extremely useful information about the 
microscopic nature of ionic hopping in 
solid electrolytes. 

The first point of possible confusion is the 
sign convention. We define the thermopower, 
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S, of a material by the equation 

VQ -= SvT, (1) 

where # is the electrochemical potential in- 
duced by the applied temperature gradient, 
VT. With this convention (see the Appendix) 
the thermopower typically has a sign opposite 
that of the charge of the mobile species (in 
simple systems). 

The equations of irreversible thermo- 
dynamics (7, 8) establish that the thermo- 
power is given by 

S=-Q/(sT> + If, (2) 

where 4 is the charge of the mobile ion species, 
Q is the so-called heat of transport, and H is a 
correction term due to electrode contact 
potential effects. In thermoelectric cells with 
reversible electrodes it appears that H may be 
safely assumed to be temperature independent 
(1, 8). Since observed thermopowers have a 
temperature dependence consistent with Eq. 
(2), the heat of transport may be un- 
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ambiguously deduced from thermopower 
measurements. One striking feature of the data 
is that in most systems the heat of transport is 
nearly equal to the activation energy for 
conduction. This observation provides an 
important clue to the nature of particle 
transport in electrolytes. The microscopic 
theory of superionic transport properties is at 
a very rudimentary stage and so a first- 
principles calculation of the heat of transport 
in real systems is presently impossible. It is 
possible, however, to compare the predicted 
value of the heat of transport and the 
activation energy of conduction for the various 
phenomenological models currently in use. 

2. Models 

Two types of rather different models have 
been proposed. The free ion model emphasizes 
the interaction between the mobile ions and the 
background lattice and the kinetic energy 
aspects of the problem by postulating the 
existence of an energy gap, E,,, in the ion 
density of states. Conduction occurs via the 
excitation of ions from localized states at zero 
energy into “continuum” states above the gap. 
The lattice gas model takes the opposite view 
and emphasizes the potential energy aspects of 
the problem. The ion-ion Coulomb interaction 
is represented by a nearest-neighbor interac- 
tion on the lattice and ionic motion is allowed 
through a phenomenological hopping term. 
The kinetic energy and the static part of the 
background potential are otherwise ignored. 
Both these models predict an activated form 
for the conductivity which is in agreement with 
experiment. The lattice gas model appears to 
describe correctly the thermodynamics of the 
nonstructural order-disorder phase transitions 
found in superionic conductors and in addition 
correctly predicts a change in the activation 
energy at the phase boundary (4, 5). The 
thermopower offers another point on which 
these two models may be compared. 

3. Free Ion Themopower 

Since the free ion model ignores correlations 
among the particles, its transport properties 
are conveniently studied from the Boltzmann 
equation point of view. The modified transport 
equation proposed by Rice and Roth is not the 
standard one [compare Rice and Roth (6, Eqs. 
(2.12)-(2.18)) with Ziman (9, Eq. (7.76))l 
because of the special statistical nature of the 
free ion states. This modification results in a 
positive sign for the thermopower, contrary to 
experiment. The Rice and Roth claim of 
agreement with the data is in error because 
they have misquoted the sign convention used 
by Takahashi (20). This discrepancy is easily 
remedied by assuming an ordinary free ion 
theory in which the usual transport equation is 
obeyed. Then following the method of 
reference (6) one finds that at low tem- 
peratures the heat of transport is simply equal 
to the band gap, a,, which in turn is equal to 
the activation energy for conduction, E,. Thus 
one obtains 

S = --EJ(qT), (3) 
in agreement with the data. It should be 
remarked that one could equally well formu- 
late a “free hole” theory which would yield a 
positive thermopower. Such a theory would be 
applicable to ordinary defect ionic conduction 
for systems in which the vacancy mobility is 
much higher than the interstitial mobility and 
(as seen in the following sections) to lattice gas 
systems at high concentration. 

4. Lattice Gas Themopower 

There has not previously been available a 
theory for the thermopower in systems with 
hopping conduction in which the interaction 
among the particles is important. We therefore 
present a calculation of the thermopower for 
the lattice gas model. Like the calculation of 
the conductivity (4, 5), this is complicated by 
the particle interactions. We must therefore 
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give up the Boltzmann equation point of view 
and turn to the Kubo formalism. 

The Hamiltonian for the lattice gas model 
which includes ionic polaron effects (4,5) is 

with 
H = 1 hi, (4) 

i 

hi = y c ni+,ni- ; 1 (cl+sci + c:ci+s) 
8 8 

+ hob~bi + ihi(bJ - bi). (5) 

The sum in Eq. (5) is over nearest-neighbor 
sites, cj creates a particle on site j, nj is the 
number operator for site j, and b] creates a 
local phonon excitation on site j. The 
parameter U controls the ion-ion interaction, t 
controls the hopping, and A determines the 
ion-phonon interaction. For simplicity the 
phonons have been taken to be dispersionless 
and interact with the ions only locally. 

The Kubo formalism requires a knowledge 
of various flux operators. The current operator 
may be determined by the following. The 
polarization operator, P, is given by 

P = C w/R,, (‘5) 

where q is the ionic charge and Rj is the 
position of the jth site. The current is defined 
by 

J = i, 

J = (i/h) [H, PI. 

Evaluation of Eq. (8) yields 

(7) 

(8) 

(9) 

Likewise the energy flux operator is defined by 

J, = 1 R, ; [I&h,]. 
i 

Let 

J, = J, + JpH, (11) 
where J, is the energy flux in the absence of 
phonon coupling and J,, is the additional flux 

due to the phonon coupling. Evaluation of Eq. 
(10) yields (for a lattice with cubic symmetry) 

J”= 7 1 p{(5+2, + nj-,)Cj+uCj 
1, 

1 
+- 

2 c (5+rr+8 + nj+S)cj:,cjlY 
S#fP (12) 

and 

J,, = 4&/q) J, (13) 

where E, is the polaron binding energy given 
by 

E, = i121Aw. (14) 

It should be noted that Eq. (12) only gives the 
component of the energy flux which is parallel 
to the particle flux and that since all cal- 
culations will be restricted to lowest order in t, 
a term in t2 has been dropped from J, J, 
essentially measures the average number of 
bonds that move with the hopping particle. 
The reason for the factor of f in the second 
term of Eq. (12) can be understood from Fig. 
1. The center of gravity of the bond in 
configuration (a) moves twice as far as it does 
for the configuration shown in (b). 

Now that the flux operators have been 
established, we may proceed to the Kubo 
formulas for the transport coefficients (11, 
12). The conductivity is determined by the 

0 ? 0 0 0 0 

0 0 0 Q-----. 

I 

0 0 0 0 0 0 

(a) (b) 
FIG. 1. Two typical hops allowed in the absence of 

phonon coupling. The energy flux, J, associated with the 
hop illustrated in (a) is twice as great as that for the hop 
shown in (b) because of the different configurations of 
the neighbors. 
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retarded current-current correlation function 
which may be obtained by analytic con- 
tinuation of the Matsubara (13,I4) function 

a(u) = (-i/ho) G(-iw + s>, (15) 

where 

G(q) = 7 dtexp (iw, t)g(z), (16) 
0 

and g(r) is the current-current correlation 
function in the Matsubara representation 

g(r) = (l/dV) (T, J(t)* J). (17) 

The volume of the system is V, d is the 
dimensionality, and r, is the time ordering 
operator. We define a second correlation 
function by 

1 (co) = (-i/hw) GQ(-iw + 6), (18) 

where 

G,(o,) = ;-” dtexp (ice, z)g,(z), (19) 
0 

and 

g&) = (lldv) CT, F(~).J), (20) 

The heat flux operator, F, is defined by 

F=JE-pJ, (21) 

where ,D is the chemical potential. The heat of 
transport is given by 

Q = q z: (W@). (22) 

We see from the above that the heat of 
transport is simply the ratio of two correlation 
functions-the heat flux-current and the 
current-current functions. 

4a. Special Cases 

The required correlation functions are in 
general difficult to evaluate exactly. It is 
therefore useful to consider some special cases 
in which the physics involved in Eq. (22) is not 
obscured by technical details. If it happens 
that the heat flux is simply proportional to the 
particle flux so that 

g&) = (A/q) g(r), (23) 

then Eq. (22) is easily evaluated and one finds 
for the heat of transport 

Q = A. (24) 

The physical meaning of this result is that each 
particle carries a well-defined amount of 
energy with it when it hops. This is of course 
precisely the case for the free ion model at low 
temperatures where A is determined by the 
em.3 gap, co 

Under certain circumstances, Eq. (23) also 
holds for the lattice gas model. For example, 
within the framework of the mean field 
approximation, the number operators in Eq. 
(12) may be replaced by their expectation 
values and one obtains 

J, = (z UC/q) J, (25) 

where z is the lattice coordination number and 
c is the concentration. The heat of transport is 
then given by the very simple expression 

Q=(zUc-&-,a). (26) 

Equation (26) becomes exact in the limit of 
c -+ 1 or c + 0. It is also exact for c = 0.5 since 
it correctly predicts that Q vanishes for a half- 
filled band as a consequence of particle-hole 
symmetry (15). 

In general, Eq. (26) can be expected to be 
valid at high temperatures (kT > u> ,but not at 
low temperatures. As pointed out by Kwak 
and Beni (I 7), the chemical potential is 
proportional to kT at high temperatures and so 
dominates over the U term in Eq. (26). At low 
temperatures, correlation effects will be the 
controlling factor. A good treatment of these 
correlations is difficult; however, an exact low- 
temperature expansion of the thermopower 
can be made. 

Consider the case of no phonon coupling (2 
= 0). Since we are working only to lowest 
order in the transfer term, every ion jump must 
exactly conserve energy. The phonon reservoir 
is not available to supply or absorb energy, 
which means that a hopping ion cannot 
change the number of neighbors it has. At 
some critical temperature, T,, the lattice gas 
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undergoes an order-disorder phase transition 
and, as noted in (4), the probability of an ion 
being able to hop without changing its number 
of neighbors vanishes exponentially in (l/T) if 
the concentration is such that the ions become 
perfectly ordered at low temperatures. This 
means that the conductivity will have the usual 
activated form. The activation energy and its 
relation to the thermopower may be obtained 
by the following argument. Suppose that the 
lattice gas has some concentration, c, and is in 
a fully ordered state at zero temperature, 
which is characterized by the fact that every 
particle has 1, of its nearest-neighbor sites 
occupied and every empty site has I, of its 
nearest-neighbor sites occupied. The state of 
the system at low but nonzero temperatures 
may be considered to be the T = 0 state with a 
certain number of defects. It is the mobility of 
these defects which is responsible for the 
conduction. The energy of formation of a 
defect consisting of a particle on what should 
be an empty site is 

F, = Ur, - p, (27) 

while the energy of formation of a defect 
consisting of a particle missing from what 
should be an occupied site is 

F, = 41, + ,u, (29 

The condition that there be equal numbers of 
such defects (to maintain the correct particle 
concentration), 

(1 - c) exp (-/?FJ = c exp (-/7F1), (29) 

determines the chemical potential 

p=f{U(Z, + l,)-kTln((l -c)/c)j. (30) 

The conductivity, (T, is determined by the 
concentration of each type of defect and their 
diffusion coefficients, D, and D,: 

u = q2/7{cD1 exp (-pr”,) + (1 - c) D, exp 
(-PFJl. (31) 

Equation (23) is satisfied for each type of 

charge carrier so that the heat of transport is 
given by 

Q = t--F, CD, exp(-/IF,) + F2( l- c) D, 
ev-PFJIl(u/s*P). (32) 

The relative minus sign enters because the 
particle and hole defects have opposite 
charges. This means that the sign of the 
thermopower is not necessarily given by the 
sign of the charge of the mobile ion species and 
that the magnitude of the heat of transport 
satisfies 

1 Ql < (a W/p))/@. (33) 

For the special case in which the conductivity 
is dominated by only one type of defect, one 
has 

Q = M,, (34) 

where E, is the activation energy for conduc- 
tion and (+/-) refers to (particle/hole) defects 
being dominant. An example of a model 
situation in which this condition holds is 
provided by the planar triangular (pt) and the 
fee lattices at a concentration of f (or 4). The 
low-temperature pt phase is ordered’ as shown 
in Fig. 2a. Each particle has 1, = 3 neighbors 
and each hole has 1, = 6 neighbors. As can be 
seen from Fig. 2b, particle defects have zero 
mobility since they are completely surrounded 
by other particles. This means that the 
conduction is entirely by hole defects and Eq. 
(34) becomes exact at low temperatures. The 
heat of transport is then given by2 

Q = -E, = 43 U + kT In 2). 

The mean field result is different: 

(35) 

Q=-j(U+ kTln2), (36) 

showing the importance of correlations at low 
temperatures. For a concentration of 3, Q has 
the same magnitude but opposite sign since the 

I This structure would actually require next-nearest- 
neighbor forces in order to be stable at finite 
temperatures. 

* Note that the terms in the chemical potential 
proportional to kTcontribute to Hand not Q in Eq. (2). 
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(a) (b) 

FIG. 2. (a) Structure of the low-temperature phase of 
the pt lattice at a concentration of two-thirds. (b) 
Illustration of a particle defect and a hole defect. Note 
that the presence of a particle defect still does not permit 
any particles to hop without changing their number of 
neighbors. There are, however, three possible hops 
allowed for the hole defect. 

conduction is due only to particle defects. This 
situation is actually realized in Na+ /%alumina 
(26). There is a stoichiometric excess of 
sodium ions which forms an ordered two- 
dimensional pt superlattice at low tem- 
peratures. Unfortunately there do not appear 
to be any thermopower data available for this 
material. In addition it is not clear how 
applicable this simple model is since the actual 
lattice gas concentration is only approximately 
4 and the ordering is very gradual with 
temperature (indicating that the thermo- 
dynamics of the system is more complex 
than that of the simple lattice gas model). 

Recall that the above results were obtained 
for the case of no phonon coupling. As 
previously noted, the addition of phonon 
coupling introduces a contribution, J,, = 
-(E,/q)J to the heat flux, F, in Eq. (21) but 
this is exactly canceled out by the associated 
reduction in the chemical potential by E,, the 
polaron binding energy. Thus the phonon 
coupling modifies the thermopower only in- 
directly through its effect on the (J”(7) - J) 
correlation function. As noted in (4), this 
effect is quite small at low temperatures so that 
Eq. (34) remains valid even in the presence of 
phonon coupling. At high temperatures the 
lattice gas disorders and the conductivity 
become dominated by the phonon coupling. 
This is most simply illustrated by the case U= 
0, 1 # 0, which is easily solved. Since U = 0, 

we have 

F = -(E,/q)J - @/dJ, (37) 

F = &T/q) ln(( 1 - c)/c)J. (38) 

The thermopower is then given by 

S = -(k/q) ln(( 1 - c)/c), (39) 

We thus see that at high temperatures the 
thermopower saturates at a fixed value and is 
no longer correlated with the activation energy 
(4, 5) for conduction, which is E,/2. This is a 
crucial point and we return to it in the later 
sections. 

46. The General Case 

We have investigated several cases in which 
the evaluation of the required correlation 
functions was simplified by a proportionality 
between the heat flux and the particle flux. We 
now consider what steps can be taken toward 
a solution of the general case. Mahan (5) has 
shown that the calculation of the dynamics 
involved in the conductivity may be reduced to 
the evaluation of certain static lattice gas 
correlation functions. A similar procedure is 
employed here to find the heat of transport. 

We begin by making the usual canonical 
transformation to displaced phonon 
coordinates: 

b: = Bj + i(A/fzo) ni, (40) 

cl = exp [i(luAw) (Bf + Bi)l a/. (41) 

Substitution of the definitions of F and J into 
Eq. (20) yields (for 7 > 0) 

g,(z) = (NqUt*a*/h*dV) 47) 6(7) Kp(7), (42) 

where a is the lattice constant and 

47) = (exp Who) (B](7) + B,(z))1 

expi-Who) (BJ + BJI), 
(43) 

d(5) = (exp [-i(L/!zo) (B!(r) + Bi(z)l 
exp Who) (II] + BSI), 

(44) 
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N cnj+*w + flj-u 
P 

)+f ,x (nj+bt+B+nj+8)] 

lM+p 

x f.z~+,<+2j(r)upzj+, 
> 

. (45) 

The phonon correlation functions are standard 
(5). The particle correlation function, K,, will 
be evaluated only to lowest order in t (5) so 
that the hopping term is dropped when u!(r) is 
evaluated: 

u:(z) = exp [ I( F)ni+“] al. (46) 
” 

The number operators may be removed from 
the exponential so that 

ut(r) = n (1 + ni+V(exp(Ur/h) - 1)) 
1 ” 

(47) 
Equation (45) may now be written 

K&) = 

CC 
{Cnj+26t +nj-u)+i C (nj+p+8+nj+S)i 

P d#fP 

' {H, [l+n.i+u+v(exP(~)-l)]} 

'{II@ [l+nj+v~(exP(<)vl)]} 

X nj+,(l -nj) 
> 

. (4% 

This has the general form 
(z-1) 

K&j = 1 (4% 
m=-(r-1) 

where the coefficients u, are linear com- 
binations of various static correlation func- 
tions of the form (nini . . . n,J. A similar set 
of coefficients is required for the conductivity 
correlation function. Once the coefficients a, 
have been obtained it is an easy matter to 
perform the necessary time integrations and 
evaluate Eq. (22) for the heat of transport. The 
required coefficients may be exactly evaluated 
in one and two dimensions using the known 
Ising model correlation functions (5). This has 

-1t /,:.I with phomns I 

I : : : : ; : ! ! ! I 
.O .1 .2 .3 .4 .5 .6 .7 .B .9 1.0 

kT/U 

FIG. 3. Plot of the (dimensionless) thermopower, 
d/k, vs the (dimensionless) temperature, kT/U, for the 
one-dimensional lattice gas at three different con- 
centrations. The thermopower is antisymmetric about 
concentration f and the effect of phonon coupling is 
important only for concentrations away from 0, f, and 1. 

been done for the one-dimensional case with 
and without coupling to the phonons (which 
were, for simplicity, treated classically). The 
results are displayed in Fig. 3.3 The thermo- 
power in the absence of polaron coupling 
has the same form as that obtained by Kwak 
and Beni (I 7) for the one-dimensional Hub- 
bard model. 

Note that coupling to the phonons reduces 
the magnitude of the thermopower at inter- 
mediate temperatures. This is caused by the 
fact that without phonons a hopping particle 
cannot change its number of neighbors. Thus 
if a hop from site i to i + 1 is to contribute to 
the energy transport, both i - 1 and i + 1 must 
be occupied. With phonon coupling only one 
of those two sites need be occupied. Hence the 
average number of bonds carried along with 
the hopping particle is decreased. This reduces 
the heat of transport and hence the thermo- 
power. This feature of the dynamics is 
important in solid electrolytes and may also be 
of relevance to the TTF-TCNQ system to 
which the Hubbard model calculations of 
Kwak and Beni (I 7) were applied. 

r The calculation leading to the results displayed in 
Fig. 3 is very similar to a calculation recently published 
by Hinklemann (35). 
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The simple one-dimensional model dis- transport changes across the phase boundary. 
cussed above does not have an order-disorder The first-order phase transition in Ag,HgI,, for 
phase transition and thus the thermopower is a example (18), does not involve any significant 
smooth function of temperature. It is clear, structural change in the anion sublattice. Only 
however, that in higher dimensions the change the cation lattice gas order parameters change 
in the static particle correlation functions across the phase boundary. Since the free ion 
across the phase boundary will result in a model ignores interactions (and correlations) 
change in the heat of transport just as the among the particles, it cannot explain the 
activation energy for conduction changes (5). change in E, and Q in this phase transition. On 
This phenomenon is observed in Ag,HgI,, the other hand, the lattice gas model can 
which has a first-order lattice gas phase explain not only the very existence of this 
transition (28) at a critical temperature T, = phase transition (and the fact that it is first 
52OC. The heat of transport and the activation order (18)) but also the change in E, and Q 
energy for conduction are both discontinuous across the phase boundary. Hence the lattice 
at the phase boundary (19,20). gas model is distinctly more successful than 

the free ion model in this regard. 

5. Summary of Model Results 
It is clear from these findings that neither 

model gives a complete description of trans- 
We now review what has been learned in the port in solid electrolytes. Each model 

above simple model calculations and consider emphasizes a different subset of terms in the 
the relevance of the models to the experimental total Hamiltonian and so a synthesis of 
situation. There are two important qualitative appropriate features from both of them is 
features of the data. The first is that in a wide necessary in order to achieve a theory which is 
variety of systems the heat of transport is consistent with the data. The lattice gas model 
nearly equal to the activation energy for already correctly describes the equilibrium 
conduction. The free ion model was found to statistical mechanics of the problem. It can 
fulfill this condition in a natural way since a also properly describe the dynamics, provided 
single parameter, s0 (the energy gap), deter- that we add to it one feature extracted from the 
mines both the activation energy for conduc- free ion model-the static potential acting on 
tion and the heat of transport. The lattice gas the mobile ions due to the background lattice. 
model does not do as well on this point. It was We develop this extended lattice gas model in 
found that at low temperatures the next section. 

IQ1 S E,, (50) 
with equality obtained only under special 6. Extended Lattice Gas Model 

circumstances. Indeed for concentration f, the The lattice gas Hamiltonian used in the 
heat of transport was found to vanish at all previous sections is formally identical to (and 
temperatures independent of E,. At high indeed was motivated by) the usual electronic 
temperatures E, is controlled by the polaron polaron Hamiltonian. However, the physics 
energy, E,, but the heat of transport was involved in the hopping term is not the same in 
found to be essentially independent of this these two models. Recall that in the electronic 
parameter. Thus it appears that the free ion polaron problem one considers a tight binding 
model is more successful than the lattice gas band made up of states localized in potential 
model in this regard. wells. Since the electron mass is so much less 

The second important qualitative feature of than the masses of the atoms in the lattice, it is 
the data is that in systems which undergo generally safe to assume that the electronic 
order-disorder phase transitions, the heat of excitation energies are very large on the scale 



of phonon energies. One therefore need con- 
sider only the ground-state electronic band. A 
second consequence of the light electron mass 
is that the electronic wavefunction is imperfec- 
tly localized in a given potential well and so 
overlaps its neighbors. The hopping parameter 
t is determined by this overlap and is a 
measure of the kinetic energy required to 
completely localize an electron on one site. 

his y 1 ni+a,oni,ot + hwbfbi 
s, (I, 0’ 

+ /I ( 1 ni, ,) (b: + bi) + C E,ni, u + Ti, 

Cl 0 

(52) 

lzr foo~Ct+~,oCi,o~ + h*C* 1, (53) 
8,o.O 

This description is not valid in the present 
problem. The masses of the mobile ions are of 
the same order as the masses of the atoms in 
the background lattice. Hence the scale of 
excitation energy for an ion in a potential well 
is one phonon energy. In addition the overlap 
between low-energy states on neighboring sites 
is essentially zero. Thus the hopping term in 
the lattice gas mode1 is purely 
phenomenological in nature and represents the 
average rate of hopping due to thermal 
fluctuations. The parameter t may therefore be 
temperature dependent (5). In order to 
improve the mode1 this hopping term must be 
treated in more detail. 

where h.c. indicates Hermitian conjugate. A 
great many possible effects are still neglected 
in this Hamiltonian. In particular, the coupling 
between the vibrational states u and the 
phonons in the background lattice is probably 
quite large and may be important in controll- 
ing the conductivity (21). This mode1 is 
proposed simply because it is the minimum 
extension of the lattice gas mode1 which is 
consistent with both conductivity and thermo- 
power measurements. 

In contrast to the conclusions of (5) we 
assume that a substantial part of the activation 
energy for conduction is due to a static barrier 
between sites. This means that on each site 
there is a potential well of depth W of the order 
of 0.1 eV. A particle in one of these wells may 
be in one of several vibrational states labeled 
by a new quantum number B. The LO phonon 
energy, hobo, is typically of the order of 15 
meV so that there are roughly (Wlhw,,) - 6 
possible vibrational states. This internal degree 
of freedom was previously ignored but will 
now play a central role. Hopping is postulated 
to occur only after a particle has been excited 
to a high vibrational state, the low-lying states 
being too localized. This feature is reminiscent 
of the energy gap postulated in the free ion 
model. 

If there are M vibrational levels ranging in 
energy from zero to Wand if t,,, = t6,,,6,,,, 
then the transport calculations proceed exactly 
as before. For most systems thermopower 
data are available only for the high- 
temperature disordered phase where the par- 
ticle hopping is controlled by the static barrier 
and the polaron coupling. Neglecting cor- 
relations in the disordered phase, one finds that 
the static and dynamic barriers simply add in 
their effect on the conductivity so that the 
activation energy is given by 

E, N W + E&. (54) 

As noted previously the dynamic barrier does 
not contribute to the heat of transport, so that 

One is thus led to a Hamiltonian for the 
extended lattice gas model: 

QE W. (55) 

At sufficiently high temperatures there will be 
significant corrections of order kT to the above 
equations. The neglect of these corrections is 
not a good approximation in many systems 
(1); .however, the rudimentary nature of the 
present mode1 and the uncertainties in the 

(51) measured quantities do not justify their 
i inclusion. 

H = 1 hi, 

THERMOPOWER OF SUPERIONIC CONDUCTORS 13 
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Combining the above equations yields a 
basic result of the model, 

Q = E, - E,/2, (56) 

from which one sees that the observed cor- 
relation in E, and Q is now explained if W is 
the dominant term in the activation energy. 
This suggests that E, is of the order of kT or 
less in many systems. Shahi (I) has pointed 
out that Q seems to correlate best with E, - 
kT. Since most disordered systems have been 
studied at roughly similar temperatures, this 
may simply indicate that E, c 2kT in these 
systems. Measured values of Q and E, - kT 
taken from Shahi’s compilation are shown in 
Table I. There are two major exceptions to the 
general trend in Table I. As noted in (22), 
W-V,NL%,J,, and [GH5)4N12A&5 
have heats of transport of 0.115 and 0.150 eV, 
respectively, while their activation energies are 
0.17 and 0.24 eV. These materials are 
otherwise similar to RbAgJ, and so the 
discrepancy is somewhat surprising (22). It 
was proposed in (22) that this effect is due to 
some (unexplained) temperature dependence in 
the number of mobile ions. The present model 
suggests, however, that the difference between 
E, and Q may simply be the result of a 
particularly large value of the polaron binding 
energy in these materials (perhaps due to the 

TABLE I 

Material Q (ev) E, - kT (eV) Ref. 

a-AgI 0.052 0.05 1 (33) 
P-Ad 0.351 0.38 (33) 
a-&,Hd, -0.322 0.33 (20) 
a-Ag,HgL 0.402 - (19) 
P-&,W, -0.764 0.58GO.81 (20) 
B&Qkh -0.0 - (1% 
KAgJ, 0.088 0.095-o. 10 (34) 
RbAgJ, 0.086 0.074-0.11 (34) 
RbAgJ, 0.078 - (25) 
NH&W, 0.058 0.095 (19) 
NWgJ~ 0.093 - (25) 
Ag&,WO, 0.138 0.16 (8) 
[(CH,WJ+kJ,, 0.115 0.17 (22) 
~(CA),Nh&,J,, 0.150 0.24 (22) 

polarizability of the organic groups). The heats 
of transport are similar to those of the other 
silver conductors, indicating that the static 
barrier heights are similar. The activation 
energies for conduction are larger because of 
the increased dynamic barrier. If this is a 
correct interpretation of the physics involved, 
then the above consideration will be an 
important factor in the search for useful new 
materials based on organic complexes.4 

6a. Additional Considerations 

There are two more points worth noting 
concerning the extended lattice gas model. The 
first is that the additional degree of vibrational 
freedom in this model will be reflected in the 
Raman and infrared spectra. The rate at which 
particles hop will determine the phase 
coherence time for the vibrations of the mobile 
atoms. As pointed out in (23) for classical 
particles diffusing in a periodic potential, the 
density-density correlation function is oscil- 
latory for short times but diffusive in nature 
for long times. This is believed to explain the 
observed increase with temperature in the 
width of the phonon line in the ir and Raman 
spectra. Thus the extended lattice gas model 
reflects this additional qualitative feature of the 
physics of solid electrolytes. 

The second point worth noting is that the 
cation hopping process typically involves the 
passage of an ion from one site to another 
through an energetically unfavorable region. 
The barrier height is controlled by the position 
of the cage ions, which are themselves vibrat- 
ing. This may be described by supposing that 
for small displacements of some generalized 
coordinate, X, the barrier height is given by 

w= W,+AX, (57) 

where W,, and L are constants. The effect of 
fluctuations in X may be approximately 

4 Takahashi (27) has recently reported (32) values for 
E, and Q in high-conductivity silver and copper 
conductors which contain various organic halides. Most 
of these materials show E, > Q, indicating substantial 
polaron coupling. 
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considered by defining a thermal-averaged 
barrier height, ci/; by 

exp (-PW) = (exp (-/3 W)). (58) 

Evaluating (exp(-&X)) for a harmonic 
oscillator of energy hm yields (24) 

ti = W, - t’J,l*/4) coth (@w/2). (59) 

For kT 9 ttw this is approximately 

w = w, - A2/(2ho). (60) 

Thus the fluctuations in the cage ion positions 
simply renormalize the barrier height without 
adding new terms to the Hamiltonian. This is 
of course only an approximate result since the 
cation vibration frequency is on the same scale 
as the frequency of the cage vibrations so that 
the two motions may be strongly coupled (21). 
Whether or not this coupling produces only a 
simple renormalization of the parameters is 
not clear. These details of the dynamics are 
among the factors which must be considered in 
going beyond the present model. 

7. Summary 

The microscopic theory of transport in solid 
electrolytes is at a rudimentary stage. Various 
phenomenological models have been 
developed to explain separate facets of the 
data but if further progress is to be made a 
unified theory must be developed. It was 
shown in this regard that the combination of 
thermopower and conductivity information 
provides some extremely useful clues about the 
nature of the ion hopping process. The 
technique for calculation of the thermopower 
in many particle systems exhibiting hopping 
conduction was established on the micro- 
scopically rigorous basis of the Kubo 
formalism and was illustrated with several 
model calculations. 

The extended lattice gas model was pro- 
posed as the simplest model consistent with the 
main qualitative features of both the conduc- 
tivity and thermopower data. Most materials 
have a heat of transport Q and an activation 

energy for conduction E, which are approxi- 
mately equal. This implies within the context 
of the model that the primary source of the 
activation energy is the static barrier between 
sites and not the polaron coupling. The 
unexpectedly large difference between E, and 
Q in the two organic-based compounds which 
have been studied suggests that the polaron 
coupling is exceptionally large in these 
materials. Another important feature of the 
data is the change in E, and Q across an 
order-disorder phase boundary. The model 
successfully explains the thermodynamics of 
the phase transition and these changes in the 
transport parameters. 

The present state of the theory is at best 
semiquantitative. Still further details of the 
hopping dynamics must be included in the 
Hamiltonian and higher-order hopping terms 
considered in the evaluation of the required 
correlation functions before a quantitatively 
accurate theory can be obtained. Progress will 
be swifter if more and better measurements of 
E, and Q over the widest possible temperature 
ranges become available. It would be par- 
ticularly useful to fill the void in data on the 
low-temperature ordered phases of various 
systems which to date have been largely 
ignored. It would also be of interest to have 
further studies of the organic-based materials 
in order to see if the difference between the 
heat of transport and the activation energy is 
in fact due to polaron coupling as indicated in 
the present model. 

Appendix 

There has been some confusion in the 
literature regarding sign conventions. Most 
authors (6, 8, 19, 25-31) use the convention 
defined by Eq. (l), which will be referred to as 
the standard convention. Rice and Roth (6) 
predict a positive sign for the thermopower in 
their free ion model. Their claim of agreement 
with Takahashi’s measurements (10) is in 
error because they have misquoted his sign 
convention (27). Browall and Kasper (20) 
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obtain a negative sign for the thermopower of 
&U-k& in agreement with the earlier 
measurement of Magistris et al. (19); however, 
the latter use the standard convention (.30), 
while Browall and Kasper do not (31). The 
two measurements also disagree considerably 
on the magnitude of the heat of transport in 
“le low-temperature /3 phase. It would be 
extremely useful to have new measurements 
performed on this material in order to resolve 
this ambiguity. Good thermopower data for 
Ag,HgI, are especially important because of 
the unique properties of this material. It 
exhibits a pure lattice gas order-disorder 
phase transition which has a latent heat (18), 
and in addition it is the only one of the 
standard silver conductors which has a lattice 
gas concentration exceeding f (1,28). 
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